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Laplace Transforms in Design and Analysis of Circuits© 

Part 4 

by Tom Bertenshaw 

 

Frequency and Phase Analysis 

 

Domain of "s" 

 

 

Suppose there is a quadratic pole in a transfer function, such as: 

 

1362  ss  
The roots of that expression are: 

 
23 js   

 

Clearly for this quadratic the roots are complex, and we know from previous 

modules that the real part determines the time constant and the imaginary part 

represents the frequency of oscillation in rads.  We eventually will plot these 

roots using a two dimensional plane wherein the real axis is defined as the 

horizontal axis and the imaginary axis is defined as vertical, each intersecting 

the other at the origin.  However, for the present it is important to recognize 

that complex roots may be present as a reactive circuit’s response to an 

impulse.  At some point, we will need to plot the trajectory of the poles as a 

function of gain and frequency.  With that in mind, the following is defined. 

 
+jω

-jω

+σ-σ

 
 

For the present, we will leave this topic, but we will return to it in later 

modules and use this coordinate system in pursuit of stability in circuit design.  

For reasons of stability, we will restrict the signs in the quadratic to be 
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positive, i.e. the real parts of the roots lie to the left of the j  axis.  That is a 

general, and prudent, design constraint.  A little thought about the behavior of 

)(tf  as a function of te   provides the reason. 

 

No matter how many iterations of finding the roots of a large quantity of 

quadratic equations where the roots are complex, we will consistently come 

to the conclusion that the domain of s is the entire complex plane.  But 

specifically for our present purposes  js   is the general solution of a 

complex quadratic with roots that are to the left of the j  axis.   

 

The transient portion of the denominator of the transfer function generally is 

of the form: 

 

(𝑠 + 𝜎)2 + 𝜔𝑑
2  

And for the steady state response to an AC driver is: 

𝑠2 + 𝜔𝑜
2 

 

  is a real number that is a function of the time constant, and   is the 

frequency of oscillation in rads/s (when 0  (in the example it is 3),   is the 

damped frequency, (in the above case 2); a frequency less than its resonance 

of 13).  The values of both  &  arise from the values of the circuit 

components. 

 

Extending this argument, consider the core variable in a general Laplace 

transform (𝑠 = −𝜎 ± 𝑗𝜔): 

 
  tjttjst eeee     

 

Since exponents are unitless the units on both  &  must be 1t , and indeed, 

they are.  Question:  can you show this is true?  Ponder:  Do you see a shadow 

of relationship between a LaPlace transform and a Fourier transform from the 

expression tjtee   ? 

 

The point of all this is that since the Laplace transform can be written as a 

function of tjtee   , we can legitimately develop a method for expressing the 

response of the transfer function as a function of frequency, and by extension, 

its initial phase at a given frequency. 
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So far, we have examined the case where the roots are complex.  For the case 

of real roots, with no imaginary component, those expressions will be first 

order roots of the form: 

 

s  
 

Repeated real roots are an exception and they are of an order: 

 

 ms    nm ,.........3,2  

 

Repeated roots do not present the same degree of difficulty in frequency 

analysis as their inversion does when finding partial fraction expansions 

(PFE) for time domain analysis.  Some excellent engineers that I have been 

associated with over the years will argue that exact repeated roots are not 

possible, so in the practical case they never have to be dealt with.  The 

reasoning behind that is that no two time constants can ever contain 

components whose values are exactly the same to n decimal places, i.e., there 

will always be a slight amount of ambiguity in value, and the analyst can take 

advantage of that to use only non-repeated roots, regardless of how close any 

n roots are to each other.  However, FAPP (For All Practical Purposes1) using 

n roots that are .1% apart make no discernable difference in the output from 

n repeated identical roots. 

 

How to treat repeated roots when inverting into the time domain is another of 

those cases where you have to be aware that the method you choose may lead 

to ridiculous amplitudes.  For the sake of prudence when we invert in this 

series of modules we will stick to identical roots and use the formal method 

of differentiation for PFE.  Choosing methods is not a consideration when 

dealing with frequency analysis as there is no need for PFE. 

 

Since any polynomial of degree 2 or greater can be factored into some 

combination of first order and/or second order terms the analysis techniques 

covered thus far in these modules are sufficient for our present purposes.  In 

general, a transfer function will always be a combination of first order, second 

order and any repeated root factors in both the numerator and the denominator, 

and the second order roots will always be complex. 

 

                                                 
1 John S. Bell, 1928-1990, Physicist extraordinaire 
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Where  xzs   are the zeros of the function (causes the function to be zero), 

and  xps   are the poles (like a telephone pole, causes the function to spike).  

It should be clear that if any roots are complex, a quadratic will appear, and 

all others will be first order roots or repeated roots that are real (repeated 

complex roots are also possible, but we will leave that case to the future). 

 

Obviously, a frequency is a constituent of the complex case, but what of the 

other cases?  It can be shown that the units of a time constant (RC or L/R) are 

time.  It follows that the reciprocal of the time constant is frequency.  The 

frequency associated with the reciprocal of the time constant is called the 

"break frequency", for reasons that will be apparent shortly. 

 

The Transfer Function as a Logarithm 

 

For the purposes of analysis or design, if we consider the behavior of a transfer 

function as a function of   (or alternately, the reciprocal of RC or L/R) we 

will find that an accurate picture of amplitude versus frequency and phase 

versus frequency emerges. 

 

First a digression.  Recall that a decibel is defined as ( xxP  is power in watts): 

 

in

out

P

P
log10  

Which can be re-written as: 

 

in

out

in

out

in

out

V

V

V

V

P

P
log20log10log10

2

2

  

 

The above definition assumes that the input and output resistances are 

approximately equal, allowing the substitution of 
xx

xx

R

V 2

 for xxP .  That is not an 

overly confining assumption in a passive circuit as it allows for maximum 

power transfer, a generally desirable design feature.  

 

Any transfer function in the LaPlace domain is the ratio of: 
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)(

)(

sD

sN
 

 

(See Eq. 1) and that ratio can certainly be constructed to express the 

relationship of outV  to inV .  We can re-write the transfer function as: 

 

)(log20)(log20log20 sDsN
V

V

in

out   

 

The Details – Creating Bode Plots 

 

Very often it is convenient to be able to sketch the response of a circuit’s 

output magnitude as a function of frequency.  All reactive circuits possess the 

ability to vary the output as frequency changes.  Recall that 𝑋𝑐 =
−𝑗

𝜔𝐶
 & 𝑋𝐿 =

𝑗𝜔𝐿,  meaning both reactance’s change value with frequency.  So, if the circuit 

is reactive, to characterize the output you must specify a frequency or range 

of frequencies.  Quite often we start at zero and proceed out towards infinity 

only as far as a practical measureable output is detectable.  In practice, a sketch 

is usually sufficient to yield the desired information, however an accurate plot 

based on computation is first desirable in a learning environment to acquaint 

you with the consistent and recurring inaccurate envelopes inherent in the 

sketch technique.  Generally the sketch is made on semi-log or log-log paper. 

 

Assume a simple transfer function of the form: 

 

s

K
 

 

Where both K and σ are real scalers, re-write that to obtain the form: 

 













s

K

1

 

 

Since the units on 
t

1
 , let   equal b

.  Then we substitute j  for s and the 

transfer function now looks like: 
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


















b

b

j

K

1

 

 

From the Module 3, we found that 
RCb

1
  (from an RC ckt) or 

R

L
, (from 

an RCL ckt.) so as a designer you always retain control over that/those 

value(s). 

 











b

j




1  is complex, so we will convert that to polar notation – remember we 

are finding magnitude, so mag
2

2

2

111
bb

b

j j




















 , and finally: 

 


















 

bbb

j











 1

2

2

tan11  

 

Taking the logarithm of both sides, the magnitude of the transfer function 

from above is: 

 

2

2

1log20log20log20log20
b

b

in

out K
V

V




   

 

The phase angle as a function of frequency is 









b


arctan  (why arctanminus ?) 

Because the expression is in the denominator and the phases of the constants 

are both zero – as illustrated in the following example.)  Phase angle is always 

taken to mean the phase of the output with respect to the input. 

 

Lo-Pass Filter 

 

As an example, consider: 

 

10

10

s
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For purposes of illustration the left hand side of transfer functions is omitted 

but understood to be 
in

out

V

V
 for our present purposes.  Later on, the left hand 

parameters may change and if/when it does the change will be identified. 

 

Re-arranging, and letting 𝑠 = 𝑗𝜔: 

 

















 

10
tan

100
1

1

10
1

1

10
1

1

1
2 js

 

 

Converting to decibels: 

 

 


















100

1log201log20

100
1

1
)(

2

2




Magnitude  

 

  









10
arctan0arctan)(


phase  

 

It may be helpful to connect the transfer function to a circuit to help visualize 

what is going on here. 

 
R

1/sC

 
 

In the above circuit (a single pole lo-pass) assume outV  is taken across the 

capacitor and that 1.RC , in that case then: 

 

10

10




sV

V

in

out  

  

And by the process developed above: 
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 


















100

1log201log20

100
1

1
)(

2

2




Magnitude  

 

  









10
arctan0arctan)(


phase  

Briefly sketching the magnitude:  when 10 , the magnitude is db0  

FAPP2; at 10 , the magnitude is db32log20  ; when 10 , the 

magnitude for all practical purposes is 









10
log20


 (with a db20 .per decade 

slope, or "roll-off").  The "break frequency" is the frequency at which 


bRC


1

, the -3db point. 

 

 
 

As can be seen from the above Bode3 (Bo-dee) plot the output magnitude 

begins to roll off as   approaches the break frequency (in this case 10 rads/s).  

At the break frequency, the magnitude is at -3db and rolls off at -20db per 

decade.  Please note that this technique plots the output magnitude versus 

frequency, but does not address the frequency content of the output.  That 

aspect of system response is left to Fourier analysis which is the subject of a 

different set of modules. 

 

                                                 
2 For All Practical Purposes 
3  Named for H. W. Bode, 1905-1982, who developed the technique 
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As expected for this circuit, the phase of the output with respect to the input 

varies from 0 to -90o as a function of  (arctan ∞ 𝑖𝑠 90°).  At very low 

frequencies the capacitor acts like an open and the input is the output.  At high 

frequencies the capacitor begins to act like a short, and by the voltage division 

rule an ever larger percentage of the input is dropped across the resistor, while 

the phase of the voltage that is dropped across the capacitor approaches the -

90o rail.   

 

Both the magnitude and the phase plots are readily hand sketched for a rapid 

peek at the performance envelope.  For the magnitude sketch use the following 

"rule of thumb": 

 

a.  begin at the lowest frequency of interest (often 0, or 1 when plotting 

logarithm format) , and find the magnitude of that frequency. 

b.  draw a line horizontally to the first break frequency.  If the lowest 

freq is also a break frequency draw a line at a slope of 20 db/decade 

per pole or zero (- for a pole, + for a zero). 

c.  from the break frequency, to the next (or to the terminal frequency 

if there are no further break frequencies) draw -20db/decade per pole 

sloped lined or a+20db/decade per zero sloped line 

























2

1log20
o

N



 where N is the number of zeros or poles at that 

frequency. 

d.  repeat step c. until all break frequencies are accounted for. 

 

Single Pole Lo-Pass
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Examine both the sketched and the computed plot below.  The greatest error 

occurs at the break frequency of 10 rads/s; the computed magnitude is -3db 

from the magnitude sketch.  That is easy to remember, your error is max at 

the break frequency and it is db3  per pole or zero at that frequency. 

 

 
 

 
 

Rule of thumb for sketching the phase plot is: 

a. Since 1tan 1 

o


 when o  assign +n45o  to a zero break frequency 

and a       -n45o to a pole break frequency. n being the number of 

poles or zeros at that break frequency. 

Single Pole Sketch
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b. one decade back from any break frequency assign the phase to 0 

change from the previous break frequency for that pole or zero (the 

origin can be considered a “previous break frequency” for this 

purpose). 

c. one decade above the break frequency assign the phase to be +n90o 

for those zero(s) or -n90o for those pole(s) at the break frequency.  

d. connect the dots.  At points of ambiguity (for example a frequency 

that is one decade above a pole o  while simultaneously being one 

decade back from a zero o ) it is best to compute the value.  Phase 

plots can be very tricky to sketch, so calculation where ambiguity 

exists is recommended. 
 

Let us consider the double pole transfer function with a break frequency of 10 

rads/s (remember, for all practical purposes the poles need not be exactly 

superimposed, merely close enough so that treating them as exact has no 

appreciable effect on the outcome prediction). 

 

2)10(

100




sInput

Output
 

 

 















2

2

10
1log40)1log(20


Magnitude  

















 

10
tan

10
tan)0(tan)( 111 

Phase  

 

Note the differences between this example and that of the single pole; the roll-

off is twice as steep and the phase difference at any frequency is doubled. 
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Also notice that at the break frequency the magnitude is down by -6db, i.e., -

3dbfor each pole. 

 

 
 

Again the phase begins a zero, but ends at -180, or double the single pole, and 

is verified by the phase equation above.  That will hold throughout, n poles 

equals output phase tending towards n*(-90).  Conversely, n zeros will drive 

the output phase towards n*(+90).   
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For design and analysis purposes, when the number of zeros are ≥ the number 

of poles division is applied until the number of zeros is one less than the 

number of poles.  This rule is consistent throughout all the processes of design 

and analysis involving transforms.  When the number of zeros dominate 

instability is always a looming threat.  However for Bode analysis this rule is 

set aside as division will yield as least one δ(t) and the log of the impulse is 

zero because its transform is 1. 

 

Consider a double pole filter that has two separate and distinct break 

frequencies, i.e., 10 rads/s and 100 rads/s.  Assume the numerator is 1000 (for 

illustration purposes only).  Then: 

 

  
























100

`
1

10
1

1

10010

1000

ssssInput

Output
 

 

Forming the necessary equations for plotting: 

 































2

2

2

2

100
1log20
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1log20)1log(20


Magnitude  

















 

100
tan

10
tan)0(tan 111 

Phase  
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As expected the roll-off between 10 and 100 rads/s s is -20db per decade, 

whereas the roll-off between 100 and 1000 rads/s is -40db per decade.  The 

pattern that is emerging is that each pole contributes a -20db per decade roll-

off beginning at the break frequency.  If a -100db per decade roll-off is needed, 

then you will need a 5 pole filter. -ndb per decade requires n/20 poles.   
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Again, another pattern that is emerging is that each pole contributes a -90o 

phase shift at the output.  n poles = n*(-90o) shifts.  That fact allows you to 

predict the terminal phase shift as  . 

 

Bandwidth and Half-Power Points 

 

Notice that the magnitude -3db at the break frequency ( b ).  -3db is known 

as the half-power point since 10 log(.5)= -3.  Filter bandwidth is usually 

defined as the range of frequencies between half-power points.  In notch and 

bandpass filters there will be a pair of half-power points; one each for roll-on 

and roll-off.  In the case of the lo-pass filter as above there is only one roll-off 

half-power point.  More will be mentioned of this topic later in the module.  

 

Adding Zeros to the Transfer Function 

 

Suppose there exists a transfer function such as: 

 

)(

)(









s

sK
 

 

Using the procedures we have already developed the expressions necessary to 

plot magnitude vs frequency and phase shift vs frequency are: 
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



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










 







 111 tantan)0(tanPhase  

 

Since the number of zeros equals the number poles division would be applied, 

but for purposes of Bode analysis the δ(t) is ignored as its transform is 1 and 

its log is zero.  For example: 

 

























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1

)10(

)100(10

s

s

s
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and then: 
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









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







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




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

22

10
1log20

100
1log20)1log(20


Magnitude  

 

















 

10
tan

100
tan)0(tan 111 

Phase  

 

Plotting these: 
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From the expression that the magnitude versus frequency plot is constructed, 

we should expect a -20db roll-off beginning at 10 rads/s and a +20db roll-on 

at 100 rads/s.   

 

From the above graph those two effects can be seen.  Since the +20db term 

cancels the -20db term beginning at 100 rad break frequency the magnitude 

of the output with respect to the input remains constant out beyond about 500 

rads/s.  The net effect of the zero is to cancel the effect of the pole at the zero 

break frequency.  This effect is very useful in designing and constructing 

bandpass and notch filters. 
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It was simple to predict that the terminal phase change would sum to zero as 

 , since -90o+90o=0.  Since the two break frequencies are 10 rads/s and 

100 rads/s we should expect maximum phase changes 












d

d
 to occur within 

that range of frequencies; from the plot it is seen that there is indeed a 

minimum accompanied by a sign change. 

 

Since voltage division must be true regardless of the technique in use, consider 

the case of a simple RC series circuit (again let RC=.1) with output taken 

across the capacitor.  Recalling that 
C

j
XC 


 , the transfer function as a 

function of   from inspecting the circuit schematic is: 

 

   j
j

jRC

j

C

j
RC

j

V

V

in

out




























1.

  transfer function 

 

 Then as a function of  , the phase starts out as zero when 0 , and: 

 

  









10
arctan0arctan)(


phase  

 

as verified by inspection of the phase equation.  The phase ends at o90  as 

 , again as verified by inspection of the circuit and the equation.  The 

magnitude as a function of ω is again found by the use of the Pythagorean 

theorem and using absolute values for j.  So: 
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output equals 20 log(10)-20 log(√1 +
𝜔

10
) 

 

Finding peak/valley maximums and minimums between break frequencies is 

done by computation using the discussed techniques for creating both the 

magnitude and phase equations.  Let your calculator do the work, its only 

essential that you understand the principles so that you can design the circuit 

to accomplish the aims.  Exercising the equations and varying break 

frequencies, and/or time constants allows you to become familiar with the 

effect.  For example, the further apart break frequencies get, the higher the 

peak amplitude (try it for yourself).  The closer break frequencies are to each 

other “sharpens” the peak; a sharp peak infers that the circuit has greater 

selectivity than a blunt peak.  Selectivity being a measure of acquiring the 

frequency of choice while attenuating other frequencies.  It will be informative 

to you exercise the equations, and discover how things change as a function 

of break frequency and time constant. 

 
The Complex Quadratic Pole 

 

Consider a transfer function such as: 

 

a

c
s

a

b
s

sN

Input

Output




2

)(
 

 

where 
a

c

a

b
&  are such that the roots are complex.  Let us change the notation to something 

more convenient to our purposes;  let 02
a

b
 and 

2
o

a

c
 , then: 

 

22 2

)(

ooss

sN

Input

Output

 
  

 

In order to remain complex restrict 10  .   

 

Substituting j  for s: 

  

   oo j

sN

Input

Output

2

)(
22 

  
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oo

j

sN

Input

Output









21

)('

2

2











  

 

 

As an example, set 1)(' sN  and 1o .  Since the salient effect occurs as a function of 

  (zeta), plots will be made for a few different values of .  
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1
1log20)1log(20.
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
Mag  
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

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


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
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tan0










oPhase  

 

Use the above when the denominator is positive.  Remember at o  the phase is -90o , 

avoiding division by zero. 
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
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
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
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




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








 
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2

tan180




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
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oPhase  

 

Use the above when the denominator is negative. 
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We still get the -40 db/decade roll-off, but the response of the system about 

the break frequency varies significantly as a function of zeta.  When zeta=.01, 

there exists an extremely narrow selectivity bandwidth about the break 

frequency.  When zeta=.01 the time constant, in this case, equals 100s and the 

system impulse response dies out at 600s.  When 1 , the system is just a 

2nd order repeated real pole filter at a break frequency of 1. 
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When the resonant frequency is changed, all that changes in the pattern is the 

frequency that the peaks occur at in the magnitude plot, and the frequency that 

holds the -90o spot in the phase plot. 

 

For example: 
 

 
 

2nd Order Complex Phase
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Since we have used the notation 22 2 ooss   , and since we restrict this 

notation to those cases wherein the roots are complex, it is legitimate to ask 

about the relationship between the resonant frequency ( o ) and the damped 

frequency ( d ) as a function of   (we will label   the damping coefficient 

from here on out to the end of the series of modules).  Clearly when 0  the 

equation becomes 22
os   and the roots are oj  and that is the resonant 

frequency and the frequency of oscillation.  However when 10  , then the 

roots of the equation are  22
ooo j   , where the frequency of 

oscillation  22
ood    or: 

 
2

0 1  d  

 

Check it out; let a denominator be 1342  ss .  The roots are 32 js  , 

13o , 3d  and o24 ; therefore 
13

2
 .  So: 

 

3413
13

2
1133

2









    Q.E.D. 

 

So ends Module 4. 

 


